Faggiani, R., Lock, C. J. L., Epps, L. A., Kramer, A. V. \& Brune, D. (1988). Acta Cryst. C44, 777-779.
Lever, S. Z., Burns, H. D., Kervitsky, T. M., Goldfarb, H. W., Woo, D. V., Wong, D. F., Epps, L. A., Kramer, A. V. \& Wagner, H. N. (1985). J. Nucl. Med. 26, 1287-1294.
Lock, C. J. L. \& Pilon, P. (1981). Acta Cryst. B37, 45-47.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, J. M. \& Hall, S. R. (1983). Editors. The XTaL System of Crystallographic Programs. Tech. Rep. TR-1364. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.

Acta Cryst. (1990). C46, 2327-2329

Structure of Aqua(ethylenediaminetetraacetato)ruthenium(III)

By Ken-ichi Okamoto* and Jinsai Hidaka
Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Ikuo Iida
Chemical Analysis Center, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
and Katsuyuki Higashino and Kan Kanamori
Department of Chemistry, Faculty of Science, Toyama University, Gofuku 3190, Toyama 930, Japan

(Received 5 February 1990; accepted 18 April 1990)

Abstract

Ru}\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right], \quad M_{r}=408.31\), monoclinic, $P 2_{1} / c, a=8.415$ (2), $b=8.831$ (1), $c=$ 17.633 (3) $\AA, \beta=99.66$ (1) ${ }^{\circ}, V=1291.8$ (4) $\AA^{3}, Z=$ $4, \quad D_{x}=2 \cdot 10 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.70930 \AA, \mu=$ $12.4 \mathrm{~cm}^{-1}, F(000)=820$, room temperature, $R=$ 0.035 for 3810 independent reflections $[I>3 \sigma(I)$]. The Ru is surrounded octahedrally by one O atom of water, and three O and two N atoms of the title ligand (Hedta).

Introduction. Recently the $\mathrm{Ru}^{\mathrm{III}}$-edta (edta: ethylenediaminetetraacetate) system has been discussed in relation to its catalytic activity (Taqui Khan, Shukla \& Rao, 1989) and its reactivity in ligand substitution (Bajaj \& van Eldik, 1988). In these circumstances, it is important to clarify the detailed structure of the $\mathrm{Ru}^{\text {III }}$-edta complex. Based on the infrared spectrum, Mukaida, Okuno \& Ishimori (1965) suggested that the $\mathrm{Ru}^{\mathrm{III}}$-(Hedta). $5 \mathrm{H}_{2} \mathrm{O}$ complex has a quinquedentately coordinated edta ligand with a free carboxylic acid moiety. No X-ray studies of the Ru-edta complexes have been reported. Thus we report the crystal structure determination of $\left[\mathrm{Ru}(\mathrm{Hedta})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.

Experimental. The title complex was prepared as follows: the crude powdery product of the $\mathrm{Ru}^{\text {III }}$-edta complex was prepared according to the literature method (Mukaida, Okuno \& Ishimori, 1965). The powder was dissolved in hot water (1 g in ca $60 \mathrm{~cm}^{3}$)

[^0]0108-2701/90/122327-03\$03.00
and the solution was kept at ambient temperature. Small yellow crystals appeared after 3-4 h. Crystals of a suitable size for X-ray analysis were obtained on growing for 2-3 days.
Yellow crystal $0.45 \times 0.40 \times 0.30 \mathrm{~mm}$; EnrafNonius CAD-4 diffractometer, 50 kV and 26 mA ; unit-cell dimensions by least-squares refinement from 25 reflections with $22<2 \theta<26^{\circ} ; \omega-2 \theta$ scan, scan rate varied from 1 to $5^{\circ} \mathrm{min}^{-1}$ (in ω), scan width ($0 \cdot 8$ $+0.350 \tan \theta)^{\circ}$; three intensity standards were monitored every 2 h of X-ray exposure time and these intensities remained constant within experimental error throughout the data collection; orientation (for the same three reflections) was monitored after every 200th scan; 3995 unique reflections, $2 \theta \leq 60^{\circ}(0 \leq h$ $\leq 11,0 \leq k \leq 12,-24 \leq l \leq 24) ; 3810$ reflections with $I>3 \sigma(I)$ were used for structure determination; intensities were corrected for Lorentz and polarization; an empirical absorption correction based on a series of ψ scans was applied (max. and min. transmission factors 0.92 and 1.00). The Ru -, three O -, and N -atom positions were determined from direct methods and the other non-H-atom positions were determined from successive difference Fourier maps. No H atoms were included in the calculation. The structure refined by full-matrix least squares using anisotropic thermal parameters for non-H atoms; R $=0.035$ and $w R=0.047, w=4 F_{o}{ }^{2} / \sigma^{2}\left(F_{o}\right)^{2}, \Delta_{\max }=$ $0.03 \sigma ;|\Delta \rho|_{\text {max }}$ in final difference Fourier map $=$ $1 \cdot 14 \mathrm{e} \AA^{-3}$ (these highest peaks correspond to the calculated hydrogen positions but their positions © 1990 International Union of Crystallography

Table 1. Final atomic coordinates and equivalent isotropic thermal parameters (\AA^{2}) for non- H atoms

$B_{\text {eq }}=8 \pi^{2} / 3\left(\sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}\right)$.				
	x	y	z	$B_{\text {eq }}$
Ru	0.80292 (3)	$0 \cdot 32482$ (3)	0.35681 (2)	1.133 (4)
$\mathrm{O}(1)$	0.6407 (3)	$0 \cdot 3427$ (3)	0.2613 (2)	1.93 (5)
$\mathrm{O}(2)$	0.5203 (4)	$0 \cdot 2091$ (4)	0.1603 (2)	2.83 (6)
O(3)	1.0007 (3)	0.3534 (3)	$0 \cdot 3086$ (2)	1.91 (5)
O(4)	1.2033 (4)	0.2215 (4)	$0 \cdot 2740$ (2)	$2 \cdot 89$ (6)
O(5)	0.3308 (4)	0.1641 (4)	$0 \cdot 4743$ (2)	2.79 (6)
O(6)	$0 \cdot 2494$ (3)	0.4036 (4)	$0 \cdot 4500$ (2)	$2 \cdot 40$ (6)
$\mathrm{O}(7)$	0.9492 (3)	0.3089 (3)	0.4626 (1)	1.59 (4)
O(8)	0.9539 (4)	0.2732 (4)	0.5882 (2)	2.38 (6)
$\mathrm{O}(\underline{W})$	0.7766 (3)	0.5584 (3)	$0 \cdot 3823$ (2)	2.00 (5)
$\mathrm{N}(1)$	0.8272 (4)	0.1069 (4)	$0 \cdot 3225$ (2)	1.44 (5)
$\mathrm{N}(2)$	$0 \cdot 6325$ (3)	0.2376 (3)	$0 \cdot 4222$ (2)	1.28 (5)
C(1)	0.6235 (5)	0.2211 (5)	$0 \cdot 2179$ (2)	1.86 (6)
C(2)	0.7434 (5)	0.0942 (5)	$0 \cdot 2407$ (2)	2.16 (7)
C(3)	1.0776 (5)	0.2255 (5)	$0 \cdot 2997$ (2)	1.90 (6)
C(4)	1.0046 (4)	0.0821 (5)	$0 \cdot 3282$ (2)	1.84 (6)
C(5)	0.3510 (4)	0.2892 (5)	$0 \cdot 4498$ (2)	1.71 (6)
C(6)	0.4895 (4)	0.3390 (4)	$0 \cdot 4105$ (2)	1.72 (6)
C(7)	0.8827 (4)	0.2732 (4)	$0 \cdot 5213$ (2)	1.50 (6)
C(8)	0.7059 (4)	0.2288 (5)	0.5055 (2)	1.77 (6)
$\mathrm{C}(9)$	0.7498 (5)	0.0062 (4)	$0 \cdot 3749$ (2)	1.91 (6)
C(10)	0.5941 (4)	0.0805 (4)	$0 \cdot 3880$ (2)	$1 \cdot 74$ (6)

could not be refined). All calculations were performed on a VAX computer using SDP (Frenz, 1978). Scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV).

Discussion. The final atomic parameters are listed in Table 1.* The molecular structure and numbering scheme are illustrated in the ORTEP (Johnson, 1976) plot given in Fig. 1. Bond distances and angles are listed in Table 2.

Fig. 1 clearly indicates that the neutral complex is a six-coordinate structure and the coordination geometry around the $\mathrm{Ru}^{\mathrm{II}}$ ion is approximately octahedral. The Ru atom is bonded to the O atom of the water molecule, and three O and two N atoms of the edta ligand, which acts as a quinquedentate ligand. A similar structure was also observed for the corresponding $\mathrm{Fe}^{\mathrm{III}}$ complex, $\left[\mathrm{Fe}(\mathrm{Hedta})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (Kennard, 1967), with a similar d^{5} configuration, although many $\mathrm{Fe}^{1 \mathrm{II}}$ complexes with the edta ligand adopt a seven-coordinate structure with the seventh coordination site occupied by $\mathrm{H}_{2} \mathrm{O}$ (Lind, Hoard, Hamor \& Hamor, 1964; Solans, Altaba \& Garcia-Oricain, 1984; Lopez-Alcala, Puerta-Vizcaino, GonzalezVilchez, Duesler \& Tapscott, 1984) or a sixcoordinate structure with the sexidentate edta ligand (Kushi, Morimasa, Yoshitsugu \& Yoneda, 1985). The $\mathrm{Ru}-\mathrm{N}$ distances in the complex are significantly

[^1]Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Ru}-\mathrm{O}(1)$	1.988 (3)	$\mathrm{O}(8)-\mathrm{C}(7)$	$1 \cdot 230$ (4)
$\mathrm{Ru}-\mathrm{O}(3)$	2.007 (3)	$\mathrm{N}(1)-\mathrm{C}(2)$	1.499 (5)
$\mathrm{Ru}-\mathrm{O}(7)$	2.060 (2)	$\mathrm{N}(1)-\mathrm{C}(4)$	1.495 (5)
$\mathrm{Ru}-\mathrm{O}(W)$	$2 \cdot 131$ (3)	$\mathrm{N}(1)-\mathrm{C}(9)$	1.507 (5)
$\mathrm{Ru}-\mathrm{N}(1)$	2.038 (3)	$\mathrm{N}(2)-\mathrm{C}(6)$	1.487 (5)
$\mathrm{Ru}-\mathrm{N}(2)$	2.130 (3)	$\mathrm{N}(2)-\mathrm{C}(8)$	1.496 (4)
$\mathrm{O}(1)-\mathrm{C}(1)$	$1 \cdot 312$ (5)	$\mathrm{N}(2)-\mathrm{C}(10)$	1.526 (5)
$\mathrm{O}(2)-\mathrm{C}(1)$	1.225 (5)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.516 (6)
$\mathrm{O}(3)-\mathrm{C}(3)$	$1 \cdot 325$ (5)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.529 (6)
$\mathrm{O}(4)-\mathrm{C}(3)$	$1 \cdot 218$ (5)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.518 (5)
$\mathrm{O}(5)-\mathrm{C}(5)$	$1 \cdot 208$ (5)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.519 (5)
$\mathrm{O}(6)-\mathrm{C}(5)$	$1 \cdot 324$ (5)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 517$ (6)
$\mathrm{O}(7)-\mathrm{C}(7)$	$1 \cdot 295$ (5)		
$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{O}(3)$	97.6 (1)	$\mathrm{Ru}-\mathrm{N}(2)-\mathrm{C}(6)$	108.0 (2)
$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{O}(7)$	173.4 (1)	$\mathrm{Ru}-\mathrm{N}(2)-\mathrm{C}(8)$	$110 \cdot 2$ (2)
$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{O}(W)$	91.2 (1)	$\mathrm{Ru}-\mathrm{N}(2)-\mathrm{C}(10)$	103.4 (2)
$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{N}(1)$	85.0 (1)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(8)$	111.0 (3)
$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{N}(2)$	93.4 (1)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	112.3 (3)
$\mathrm{O}(3)-\mathrm{Ru}-\mathrm{O}(7)$	88.8 (1)	$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(10)$	111.5 (3)
$\mathrm{O}(3)-\mathrm{Ru}-\mathrm{O}(W)$	95.2 (1)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$123 \cdot 2$ (4)
$\mathrm{O}(3)-\mathrm{Ru}-\mathrm{N}(1)$	82.0 (1)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	116.6 (3)
$\mathrm{O}(3)-\mathrm{Ru}-\mathrm{N}(2)$	163.0 (1)	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$120 \cdot 2$ (4)
$\mathrm{O}(7)-\mathrm{Ru}-\mathrm{O}(W)$	86.7 (1)	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	112.6 (3)
$\mathrm{O}(7)-\mathrm{Ru}-\mathrm{N}(1)$	97.5 (1)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{O}(4)$	122.7 (4)
$\mathrm{O}(7)-\mathrm{Ru}-\mathrm{N}(2)$	80.7 (1)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	115.8 (3)
$\mathrm{O}($ W) - $\mathrm{Ru}-\mathrm{N}(1)$	174.9 (1)	$\mathrm{O}(4)-\mathrm{C}(3)-\mathrm{C}(4)$	121.4 (4)
$\mathrm{O}(W)-\mathrm{Ru}-\mathrm{N}(2)$	97.6 (1)	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	107.9 (3)
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(2)$	86.0 (1)	$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{O}(6)$	124.6 (4)
$\mathrm{Ru}-\mathrm{O}(1)-\mathrm{C}(1)$	114.9 (2)	$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	126.4 (4)
$\mathrm{Ru}-\mathrm{O}(3)-\mathrm{C}(3)$	$113 \cdot 5$ (3)	$\mathrm{O}(6)-\mathrm{C}(5)-\mathrm{C}(6)$	$109 \cdot 0$ (3)
$\mathrm{Ru}-\mathrm{O}(7)-\mathrm{C}(7)$	117.9 (2)	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$115 \cdot 3$ (3)
$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{C}(2)$	$107 \cdot 6$ (2)	$\mathrm{O}(7)-\mathrm{C}(7)-\mathrm{O}(8)$	$124 \cdot 1$ (3)
$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{C}(4)$	105.5 (2)	$\mathrm{O}(7)-\mathrm{C}(7)-\mathrm{C}(8)$	117.2 (3)
$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{C}(9)$	107.4 (2)	$\mathrm{O}(8)-\mathrm{C}(7)-\mathrm{C}(8)$	118.7 (3)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	110.9 (3)	$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	113.4 (3)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(9)$	111.4 (3)	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$108 \cdot 1$ (3)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(9)$	113.6 (3)	$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	108.8 (3)

Fig. 1. ORTEP drawing of $\left[\mathrm{Ru}(\mathrm{Hedta})\left(\mathrm{H}_{2} \mathrm{O}\right)\right](50 \%$ probabilty thermal ellipsoids) with the atom-numbering scheme. H atoms are omitted for clarity.
different [2.038 (3) and 2.130 (3) \AA], although the difference between them is somewhat larger than that of the corresponding $\left[\mathrm{Fe}(\mathrm{Hedta})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][2 \cdot 19$ (3) and 2.25 (3) \AA] (Kennard, 1967). The $M-\mathrm{N}$ ($M: \mathrm{Ru}$ and Fe) distances seem to depend on the species occupying the position trans to the N atom, that is, the $M-\mathrm{N}$ bond trans to the O atom in the carboxylate group is longer than that trans to the O
atom in the water molecule. The average Ru O -(edta) distance is 2.018 (3) \AA and $\mathrm{Ru}-\mathrm{O}$ (water) is $2 \cdot 131$ (3) \AA. Although the $\mathrm{Ru}-\mathrm{O}$ distances are somewhat longer than those of the corresponding $\mathrm{Fe}^{\mathrm{IIII}}$ complex [1.98 (3) and 2.07 (3) \AA, respectively], the bond angles for each chelate ring of the Ru complex, $\mathrm{N}(1)-\mathrm{Ru}-\mathrm{O}(1)\left[85 \cdot 0(1)^{\circ}\right], \mathrm{N}(1)-\mathrm{Ru}-$ $\mathrm{O}(3)\left[82.0(1)^{\circ}\right], \mathrm{N}(2)-\mathrm{Ru}-\mathrm{O}(7)\left[80.7(1)^{\circ}\right]$ and $\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(2)\left[86 \cdot 0(1)^{\circ}\right]$, are larger than those of the corresponding $\mathrm{Fe}^{\mathrm{III}}$ complex [83 (1), 77 (1), 78 (1) and 83 (1) ${ }^{\circ}$, respectively (Kennard, 1967)]. The bond angles between the trans positions for the Ru complex, $\mathrm{O}(1)-\mathrm{Ru}-\mathrm{O}(7)\left[173.4\right.$ (1) $\left.{ }^{\circ}\right], \mathrm{N}(2)-\mathrm{Ru}-\mathrm{O}(3)$ $\left[163.0(1)^{\circ}\right]$ and $\mathrm{N}(1)-\mathrm{Ru}-\mathrm{O}(W)\left[174.9(1)^{\circ}\right]$ are also closer to 180° than those of the corresponding $\mathrm{Fe}^{\text {III }}$ complex $\left[167(1), 155(1)\right.$ and $168(1)^{\circ}$, respectively]. These indicate that $\left[\mathrm{Ru}(\mathrm{Hedta})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ assumes a more regular octahedral structure than [$\left.\mathrm{Fe}(\mathrm{Hedta})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.

Intermolecular hydrogen bonds are recognized between the non-coordinated O atoms in edta and the O atom in water, $\mathrm{O}(2) \cdots \mathrm{O}(W)\left(1-x,-\frac{1}{2}+y, \frac{1}{2}-\right.$ z) $[2 \cdot 819(4) \AA], \mathrm{O}(4) \cdots \mathrm{O}(W)\left(1-x,-\frac{1}{2}+y, \frac{1}{2}-z\right)$
$[3 \cdot 139(5) \AA$] and $\mathrm{O}(6) \cdots \mathrm{O}(W)(1-x, 1-y, 1-z)$ [3.020 (5) Á].

References

Bajaj, H. C. \& van Eldik, R. (1988). Inorg. Chem. 27, 40524055.

Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - A Real Time System for Concurrent X-ray Data Collectirı and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kennard, C. H. L. (1967). Inorg. Chim. Acta, 1, 347-354.
Kushi, Y., Morimasa, K., Yoshitsugu, K. \& Yoneda, H. (1985). 35th Symp. Coord. Chem., Hiroshima, Japan. Abstract 2B01.
Lind, M. D., Hoard J. L., Hamor, M. J. \& Hamor, T. A. (1964). Inorg. Chem. 3, 34-43.
lopez-Alcala, J. M., Puerta-Vizcaino, M. C., GonzalezVilchez, F., Duesler, E. N. \& Tapscott, R. E. (1984). Acta Cryst. C40, 939-941.
Mukaida, M., Okuno, H. \& Ishimori, T. (1965). Nippon Kagaku Zasshi, 86, 598-600.
Solans, X., Altaba, M. F. \& Garcia-Oricain, J. (1984). Acta Cryst. C40, 635-638.
Taqui Khan, M. M., Shukla, R. S. \& Rao, A. P. (1989). Inorg. Chem. 28, 452-458.

The Structure of $1,1,1,2,2,2,3,3-O c t a c a r b o n y l-~ \mu-(1-3-\eta$-cyclododeca-1,6,9-trien-1-yl-3-ylidene)-2,3- μ-hydrido-3-|($A s, A s, A s^{\prime}, A s^{\prime}$-tetraphenyl)methylenebis(arsine)-As|-triangulo-triruthenium(0)(3 Ru-Ru)

By Hoong-Kun Fun,* Omar bin Shawkataly \dagger and Siang-Guan Teoh $\ddagger \S$
School of Physics, Chemical Sciences Programme, Centre for Off-Campus Studies, School of Chemistry, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia

(Received 27 November 1989; accepted 6 April 1990)

Abstract

Ru}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{15}\right)(\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{As}_{2}\right)(\mathrm{CO})_{3}\right], \quad M_{r}=\) 1159.85, orthorhombic, Pca2,$\quad a=30.385$ (2), $b=$ 10.047 (2), $c=14.402$ (3) $\AA, V=4396$ (1) $\AA^{3}, Z=4$, $D_{x}=1.752, D_{m}=1.740 \mathrm{Mg} \mathrm{m}^{-3}$ (flotation in chloroform and iodomethane), $\lambda($ Mo $K \alpha)=0.71069 \AA, \mu$ $=24.14 \mathrm{~cm}^{-1}, F(000)=2280, T=295 \mathrm{~K}, R=0.0429$ for 3712 observed reflections. The structure contains a triangle of Ru atoms; $\mathrm{Ru}(1)$ and $\mathrm{Ru}(2)$ are bonded to three CO groups, and $\operatorname{Ru}(3)$ to two. The hydride bridges $\mathrm{Ru}(2)$ and $\mathrm{Ru}(3)$. The $\mathrm{C}_{12} \mathrm{H}_{15}$ ligand is bound in the $\mu_{3}-2 \eta^{1}, \eta^{3}$ mode to the Ru_{3} face. $\mathrm{Ru}-\mathrm{Ru}$ distances: 2.981 (1) \AA (H- bridged), 2.775 (1) and

^[* School of Physics. \dagger Chemical Sciences Programme, Centre for Off-Campus Studies. \ddagger School of Chemistry. § To whom correspondence should be addressed.]

0108-2701/90/122329-03\$03.00
2.777 (1) \AA; The dpam [bis(diphenylarsino)methane] ligand is monodentate with an $\mathrm{Ru}(3)$-As distance of 2.431 (2) \AA.

Introduction. The reaction between $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and $1,5,9$-cyclododecatriene [CDT] results in the complex $\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-2 \eta^{1}, \eta^{3}-\mathrm{C}_{12} \mathrm{H}_{15}\right)$ (1) in high yield (Bruce, Cairns \& Green, 1972). These authors have also examined the substitution reaction of complex (1) with $\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{P}(\mathrm{OMe})_{3}$ and $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{OEt}$. However, it was not possible for them to determine the precise stereochemistry of the products formed. As part of our study on the coordination of Group 15 bidentate ligands to transition metal clusters, we have determined the structure of the title compound $\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-2 \eta^{1}, \eta^{3}-\mathrm{C}_{12} \mathrm{H}_{15}\right)\left(\mu_{1}-\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{AsPh}_{2}\right)-$ $(\mathrm{CO})_{8}$.
© 1990 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom coordinates (calculated) have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53206 (23 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

